

13. Kulanthaivel, P. and Pelletier, S. W. (1987) *Tetrahedron Letters* **28**, 3883.

14. Pelletier, S. W., Chokshi, H. P. and Desai, H. K. (1986) *J. Nat. Prod.* **49**, 892

15 β -HYDROXYVINCADIIFORMINE, AN ALKALOID FROM THE LEAVES OF *RHAZYA STRICTA*

ATTA-UR-RAHMAN*, TALAT FATIMA and SAJIDA KHANUM

H. E. J. Research Institute of Chemistry, University of Karachi, Karachi 32, Pakistan

(Received in revised form 24 February 1988)

Key Word Index—*Rhazya stricta*, Apocynaceae, alkaloid; 15 β -hydroxyvincadiformine, homodecoupling; ^{13}C NMR, DEPT

Abstract—A new alkaloid, 15 β -hydroxyvincadiformine has been isolated from the leaves of *R. stricta*.

INTRODUCTION

Rhazya stricta (Decaisne) is a small glabrous erect shrub, abundantly distributed in Pakistan [1-3]. The plant is well known in the indigenous system of medicine for the treatment of various diseases [4-7]. Extracts of *R. stricta* showed anti-cancer and antineoplastic activity [8-11]. We have previously reported a number of new alkaloids from the plant [4, 12-21]. In continuation of our studies on the isolation and structure elucidation of new chemical constituents from the leaves of *Rhazya stricta*, we have isolated a new alkaloid, 15 β -hydroxyvincadiformine (1), the structure of which has been established by spectroscopic studies.

RESULTS AND DISCUSSION

The crude alkaloidal material obtained from the ethanolic extract of the fresh leaves of *Rhazya stricta* by conventional procedures [4, 5] was subjected to column chromatography for preliminary fractionation. The fraction obtained on elution with petrol-chloroform (1:3) afforded a mixture of alkaloids. This mixture was subjected to repeated chromatographic purification on silica gel (Merck, GF-254) in petrol-chloroform-methanol (14:5:1). The faster moving alkaloid was obtained as a pale yellow amorphous material and gave a UV spectrum characteristic of the anilinoacrylate system. The IR spectrum showed peaks at 3420 (-NH), 3400 (OH) and 1690 cm^{-1} (conjugated ester: $-\text{N}-\text{C}=\text{C}-\text{CO}_2\text{Me}$). The HRMS afforded M at 354.1943 ($\text{C}_{21}\text{H}_{26}\text{N}_2\text{O}_3$), indicating the presence of 10 double bond equivalents in the molecule and a fragmentation characteristic of the *Aspidosperma* skeleton. The ^1H NMR spectrum (CDCl_3 ,

300 MHz) showed the presence of 26 protons. A three-proton singlet at δ 3.75 was assigned to the ester methyl protons. Another three proton singlet at δ 0.67 ($J_{18,19} = 7.5$ Hz) was assigned to the methyl protons of the ethyl group. Two quartets resonated at δ 0.96 ($J_{19a,18} = 7.5$ Hz) and δ 1.11 ($J_{19b,18} = 7.5$ Hz) for the C-19 methylene protons of the ethyl group, their separate chemical shifts being on account of their prochiral nature. Such a differentiation between the two methylene protons of the ethyl group has previously been observed in vindoline [22] and bannucine [23]. A multiplet for C-15 α H appeared at δ 3.74. Other chemical shift assignments for 15 β -hydroxyvincadiformine are shown in Table 1.

Two dimensional NMR measurements (COSY-45, 2D J -resolved) were carried out to verify the assignments. The coupling interactions were established through COSY-45 spectrum while the multiplicities of the overlapping proton signals were determined from the 2D J -resolved spectrum. The assignments for the C-18 methyl protons at δ 0.66 could thus be confirmed from the COSY-45 spectrum, which showed strong cross peaks with the signals at δ 0.99 for C-19H α and at δ 1.11 for C-19H β protons. The signal at δ 3.74 (C-15H α) showed strong cross peaks with the signal at δ 2.01 (C-14 α), while the signal at δ 2.23 (C-5) showed cross peaks with the signal at δ 1.74 C-6 protons. The COSY-45 spectrum of 15 β -hydroxyvincadiformine (1) is presented in Fig. 1 with the important interactions indicated.

The ^{13}C NMR spectrum (CDCl_3 , 75 MHz, DEPT) of the compound showed a downfield signal at δ 169.30 for the ester carbonyl group. Another downfield quaternary signal at δ 167.23 was assigned to the C-2 carbon atom. A downfield signal for the hydroxyl-bearing C-15 methine carbon resonated at δ 70.51, its downfield chemical shift

Table 1 ^1H NMR spectral data of 15β -hydroxyvincadiformine (1)

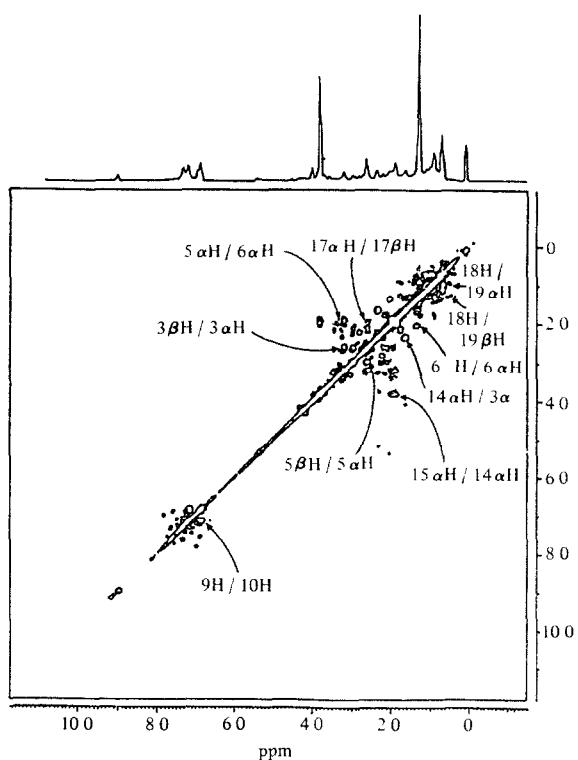
H	ppm	
3 α	2.56 dd	$J_{3\alpha, 3\beta} = 15.1$ Hz, $J_{3\alpha, 14\alpha} = 8.0$ Hz
3 β	3.14 ddd	$J_{3\beta, 15\alpha} = 5.5$ Hz, $J_{3\beta, 14\beta} = 9.8$ Hz, $J_{3\beta, 3\alpha} = 16.3$ Hz
5 α	2.74 m	
5 β	2.23 m	
6 α	2.11 dd	$J_{6\alpha, 5\alpha} = 6.4$ Hz, $J_{6\alpha, 6\beta} = 11.5$ Hz
6 β	1.73 dd	$J_{6\beta, 6\alpha} = 11.55$ Hz, $J_{6\beta, 5\beta} = 4.3$ Hz
9H	7.15 d	$J_{9, 10} = 7.35$ Hz
10H	6.85 t	$J_{10, 11} = 7.3$ Hz, $J_{10, 9} = 7.25$ Hz
11H	7.11 t	$J_{11, 12} = 7.2$ Hz, $J_{11, 10} = 7.3$ Hz
12H	6.80 d	$J_{12, 11} = 7.2$ Hz
14H α	1.80 m	
14H β	2.00 m	
15H α	3.74 m	
17H β	2.64 d	$J_{17\beta, 17\alpha} = 15.0$ Hz
17H α	2.92 d	$J_{17\alpha, 17\beta} = 14.67$ Hz
18H	0.67 t	$J_{18, 19} = 7.5$ Hz
19H α	0.96 q	$J_{19\alpha, 18} = 7.5$ Hz
19H β	1.11 q	$J_{19\beta, 18} = 7.35$ Hz
21H α	3.96 s	
OCH ₃	3.75 s	
N-H	8.93 s	

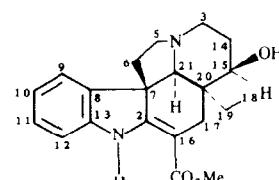
indicating the presence of 15β -hydroxyl configuration, (in 15α -hydroxy compound, the signal occurs at δ 67.88 [24]). The C-18 methyl carbon atom appeared at δ 8.45. Other ^{13}C -NMR chemical shift assignments are presented in Table 2. This data led to structure (1), corresponding to

Table 2. ^{13}C -NMR spectral data of 15β -hydroxyvincadiformine (1)

C	ppm	multiplicity
2	167.23	s
3	51.29	t
5	47.43 ^a	t
6	45.43 ^a	t
7	55.57	s
8	137.50	s
9	121.20	d
10	120.70	d
11	127.70	d
12	109.47	d
13	143.35	s
14	31.38	t
15	70.51	d
16	92.97	s
17	22.58	t
18	8.45	q
19	26.57	t
20	43.71	s
21	74.71	d
COOMe	50.98	q
COOMe	169.30	s

^a Assignments may be interchanged.




Fig. 1

15β -hydroxyvincadiformine, for the substance. 15β -Hydroxyvincadiformine is known synthetically as an intermediate in the synthesis of tabersonine [24]

EXPERIMENTAL

General. UV IR The ^1H NMR spectra were recorded at 300 MHz and the ^{13}C -NMR spectra at 75 MHz. TLC experiments were performed on silica gel (GF-254, 0.2 mm) precoated plates Merck)

The EtOH extracts of the fresh leaves (95 kg) of *Rhazya stricta* were concentrated to a gum which was dissolved in 10% HOAc (1 l) the non-alkaloidal part was removed by extraction with EtOAc (25 l), the aq. acidic soln basified with aq. NH_3 (500 ml) to pH 11 and extracted with EtOAc (36 l) to afford the crude alkaloids (350 g). This alkaloidal material was subjected to CC (alkaloidal silica gel, 1:40). Elution with increasing polarities of C_6H_6 , petrol, CHCl_3 , EtOAc and MeOH afforded several fractions. A fraction obtained on elution with petrol- CHCl_3 (1:3) was found to be a mixture of alkaloids, (5 g). This alkaloidal mixture was further purified on repeated column chromatography.

15β -Hydroxyvincadiformine (1)

graphy over silica gel. Elution with $\text{CHCl}_3\text{-MeOH}$ (9:1) afforded a partly purified mixture of alkaloids (30 mg). Further purification yielded the new alkaloid, 15β -hydroxyvincadifformine (**1**) (12 mg). 15β -hydroxyvincadifformine (**1**) gave a light orange colouration with Dragendorff's reagent and deep blue colouration with ceric sulphate spray.

15β -Hydroxyvincadifformine (**1**) $[\alpha]_D \text{CHCl}_3 = +240.57^\circ$ UV (MeOH). λ_{max} nm, 205, ($\log \epsilon$ 3.90) 224 ($\log \epsilon$ 3.85), 296 ($\log \epsilon$ 3.99), 327 ($\log \epsilon$ 4.17), λ_{min} nm, 218 ($\log \epsilon$ 4.58), 260 ($\log \epsilon$ 3.52), 305 ($\log \epsilon$ 3.20) IR (CHCl_3) ν_{max} cm^{-1} , 3420 (—NH), 3400 (—OH) 1690 (ester C=O) HRMS: Observed MS rel., 354 (20%, $\text{C}_{21}\text{H}_{26}\text{N}_2\text{O}_3$), 336 1837 (6%, $\text{C}_{21}\text{H}_{24}\text{N}_2\text{O}_2$), 323 1759 (5%, $\text{C}_{20}\text{H}_{23}\text{N}_2\text{O}_2$), 141 1153 (25% $\text{C}_8\text{H}_{15}\text{NO}$), 140 1075 (100%, $\text{C}_8\text{H}_{14}\text{NO}$). ^1H NMR (CDCl_3 , 300 MHz) Table 1. ^{13}C NMR (CDCl_3 , 75 MHz, DEPT) Table 2

REFERENCES

- 1 Hooker, J. D. and Jackson, B. D. (1865) *Index Kewensis* **4**, 705
2. Bisset, N. G. (1958) *Ann. Bogor* **3**, 105.
3. Atta-ur-Rahman and Fatima, K. (1982) *J. Chem. Soc. Pak.* **4**, 121
4. Ahmad, Y., Fatima, K., Quesne, P. W. Le and Atta-ur-Rahman (1983) *Phytochemistry* **22**, 1017.
5. Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) *A Glossary of Indian Medicinal Plants*, p. 212. CSIR, New Delhi.
6. Dymock, W., Warden, C. J. H. and Hooper, D. H. (1983) *Pharmacographia Indica* Vol 3, p. 3911. Kegan, Paul, Trench, Trubner and Company, London
7. Watt, G. (1892) *A Dictionary of the Economic Products of India*. W. H. Allen, London.
8. Hooper, D. (1906) *Pharm. J.* **77**, 258.
9. Siddiqui, S. and Bukhari, A. Q. S. (1972) *Nature* **235**, 393.
10. Mukhopadhyay, S., Handy, G. A., Funayama, S. and Cordell, G. A. (1981) *J. Nat. Prod.* **44**, 696
11. Mukhopadhyay, S., Sayed, A. El, Handy, G. A. and Cordell, G. A. (1983) *J. Nat. Prod.* **46**, 409.
12. Atta-ur-Rahman and Khanum, S. (1984) *Phytochemistry* **23**, 709.
13. Atta-ur-Rahman and Khanum, S. (1984) *Heterocycles* **22**, 2183
14. Atta-ur-Rahman, Habib-ur-Rehman and Malik, S. (1986) *Heterocycles* **24**, 703
15. Atta-ur-Rahman, Malik, S. and Habib-ur-Rehman (1986) *Phytochemistry* **25**, 1731
16. Atta-ur-Rahman and Khanum, S. (1984) *Tetrahedron Letters* **25**, 3913
17. Atta-ur-Rahman and Khanum, S. (1984) *Phytochemistry* **24**, 2023
18. Atta-ur-Rahman and Zaman, K. (1984) *Heterocycles* **22**, 2023
19. Atta-ur-Rahman and Zaman, K. (1986) *Phytochemistry* **25**, 1779.
20. Atta-ur-Rahman and Khanum, S. (1985) *Heterocycles* **26**, 405.
21. Atta-ur-Rahman, Khanum, S., Fatima, K., Ahmad, Y. and Badar, Y. (1987) *Z. Naturforsch.* **42** 91.
22. Hunter, B. K., Hall, L. D. and Sanders, J. K. M. (1983), *J. Chem. Soc., Perkin Trans. I.* 657.
23. Atta-ur-Rahman, Ali, A. and Choudhary, M. I. (1986), *J. Chem. Soc., Perkin Trans. I.* 923
24. Kuehne, M. E., Bornmann, W. G., Earley, W. G. and Marko, I. (1986) *J. Org. Chem.* **51**, 2913.